

Unconventional geothermal technology development to address the climate change issue in the densely populated areas of the world.

by

Roy Baria¹, Joerg Baumgaertner², Tony Bennett¹, Hylke Glass³, Andrew Jupe⁴

¹ EGS Energy Ltd, ² BESTEC GmbH, ³ Camborne School of Mines, Exeter University, ⁴ altcom Ltd.

The Fifth UK Deep Geothermal Symposium 25th October 2016, The Geological Society, Burlington House, London

BritGeothermal

WORLD CLIMATE CHANGE IS A WORLDWIDE PROBLEM

A MEETING WAS HELD AT THE WORLD BANK IN WASHINGTON DC ON 5th March 2015 under <u>IGA/UNECE*/World Bank</u>

One of the items which was highlighted was the disparity

between

The availability of conventional geothermal resource and

The energy demand from high density of population in the world.

ie **SUPPLY & DEMAND**

for geothermal energy

*= United Nations Economic Commission for Europe

World Population Density (people/km²) (DEMAND)

World population is ~7 billion (estimated by the UN)
The majority of geothermal is devoid of the population density

If Geothermal Energy is going to play an important part in industrialised & populated areas then

a new and unconventional type of geothermal resource (EGS)
needs to be identified and exploited where the population density is high and not on the margins of continents.

EGS project in Insheim, Germany

Insheim

2008-2012; depth ~3800m Temp ~165°C Flow 65-85 l/s

Power output 4-5MWe (~8000 homes)
Thermal output 6-10MWth (~1000 homes, potential)

New concept of accessing deep permeable faults in igneous basement

Commercial EGS project in Insheim, Germany

An Aerial View

Major fault zones

A CHINA CLAY PIT IN ST. AUSTELL

BEFORE

eden project

AFTER

Test the EGS concept at the Eden Project, Cornwall

WHAT NEXT to address the climate change issue

- > Establish a European EGS project (UK, Portugal, Hungary etc.)
- Characterise properties of these deep faults away from Rhine Graben.
- Demonstrate that these faults can resemble <u>hydrothermal systems but in igneous rock</u> and are more <u>widely available</u> than hydrothermal systems.
- ➤ <u>Improve the economics</u> by further development of this technology.
- ➤ Develop a mechanism for scaling up from 4-8MWe to 50-100MWe.
- It will prove to <u>other nations</u> that <u>geothermal energy is accessible</u> using this technology, both for heat and power generation.
- Create a <u>European Centre of Excellence</u> which will include a number of Universities from Europe to <u>unify the European research</u> on this topic.
- > This will establish European Leadership for EGS market in the world.
- ➤ <u>UK & European Commission</u> will be able to help the <u>climate change issue</u> by supporting development of such projects in populated areas of the world.
- International cooperation should be encouraged (e.g. FORGE; US DoE), with IEA/GIA and EGEC as a part of the supervisory group who could advise on the future direction of this technology.

